|
In quantum mechanics, the quantum eraser experiment is an interferometer experiment that demonstrates several fundamental aspects of quantum mechanics, including quantum entanglement and complementarity. The double-slit quantum eraser experiment described in this article has three stages: #First, the experimenter reproduces the interference pattern of Young's double-slit experiment by shining photons at the double-slit interferometer and checking for an interference pattern at the detection screen. #Next, the experimenter marks through which slit each photon went, without disturbing its wavefunction, and demonstrates that thereafter the interference pattern is destroyed. This stage indicates that it is the existence of the "which-path" information that causes the destruction of the interference pattern. #Third, the "which-path" information is "erased," whereupon the interference pattern is recovered. (Rather than removing or reversing any changes introduced into the photon or its path, these experiments typically produce another change that obscures the markings earlier produced.) A key result is that it does not matter whether the eraser procedure is done before or after the detection of the photons.〔 Quantum erasure technology can be used to increase the resolution of advanced microscopes.〔 〕 ==Introduction== The quantum eraser experiment described in this article is a variation of Thomas Young's classic double-slit experiment. It establishes that when action is taken to determine which slit a photon has passed through, the photon cannot interfere with itself. When a stream of photons is marked in this way, then the interference fringes characteristic of the Young experiment will not be seen. The experiment described in this article is capable of creating situations in which a photon that has been "marked" to reveal through which slit it has passed can later be "unmarked." A photon that has been "marked" cannot interfere with itself and will not produce fringe patterns, but a photon that has been "marked" and then "unmarked" can thereafter interfere with itself and will cooperate in producing the fringes characteristic of Young's experiment.〔 This experiment involves an apparatus with two main sections. After two entangled photons are created, each is directed into its own section of the apparatus. Anything done to learn the path of the entangled partner of the photon being examined in the double-slit part of the apparatus will influence the second photon, and vice versa. The advantage of manipulating the entangled partners of the photons in the double-slit part of the experimental apparatus is that experimenters can destroy or restore the interference pattern in the latter without changing anything in that part of the apparatus. Experimenters do so by manipulating the entangled photon, and they can do so before or after its partner has passed through the slits and other elements of experimental apparatus between the photon emitter and the detection screen. So, under conditions where the double-slit part of the experiment has been set up to prevent the appearance of interference phenomena (because there is definitive "which path" information present), the quantum eraser can be used to effectively erase that information. In doing so, the experimenter restores interference without altering the double-slit part of the experimental apparatus.〔 A variation of this experiment, delayed choice quantum eraser, allows the decision whether to measure or destroy the "which path" information to be delayed until after the entangled particle partner (the one going through the slits) has either interfered with itself or not. In delayed-choice experiments quantum effects can mimic an influence of future actions on past events. However, the temporal order of mesurement actions is not relevant. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「quantum eraser experiment」の詳細全文を読む スポンサード リンク
|